3 research outputs found

    Epidemiological Prediction using Deep Learning

    Get PDF
    Department of Mathematical SciencesAccurate and real-time epidemic disease prediction plays a significant role in the health system and is of great importance for policy making, vaccine distribution and disease control. From the SIR model by Mckendrick and Kermack in the early 1900s, researchers have developed a various mathematical model to forecast the spread of disease. With all attempt, however, the epidemic prediction has always been an ongoing scientific issue due to the limitation that the current model lacks flexibility or shows poor performance. Owing to the temporal and spatial aspect of epidemiological data, the problem fits into the category of time-series forecasting. To capture both aspects of the data, this paper proposes a combination of recent Deep Leaning models and applies the model to ILI (influenza like illness) data in the United States. Specifically, the graph convolutional network (GCN) model is used to capture the geographical feature of the U.S. regions and the gated recurrent unit (GRU) model is used to capture the temporal dynamics of ILI. The result was compared with the Deep Learning model proposed by other researchers, demonstrating the proposed model outperforms the previous methods.clos

    Machine-Learning-Based Prediction of Land Prices in Seoul, South Korea

    No full text
    The accurate estimation of real estate value helps the development of real estate policies that can respond to the complexities and instability of the real estate market. Previously, statistical methods were used to estimate real estate value, but machine learning methods have gained popularity because their predictions are more accurate. In contrast to existing studies that use various machine learning methods to estimate the transactions or list prices of real estate properties without separating the building and land prices, this study estimates land price using a large amount of land-use information obtained from various land- and building-related datasets. The random forest and XGBoost methods were used to estimate 52,900 land prices in Seoul, South Korea, from January 2017 to December 2020. The models were also separately trained for different land uses and different time periods. Overall, the results revealed that XGBoost yields a higher prediction accuracy. Whereas the XGBoost models were more accurate on the 2020 data than on the 2017–2020 data when analyzing residential areas, the random forest models were more accurate on the 2017–2020 data than on the 2020 data. Further analysis will extend the prediction model to consider submarkets determined by price volatility and locality
    corecore